Prophet Secretary Through Blind Strategies

J.Correa ${ }^{1}$, Raimundo Saona ${ }^{1}$, B. Ziliotto ${ }^{2}$

${ }^{1}$ Universidad de Chile
${ }^{2}$ CEREMADE, CNRS, Université Paris Dauphine

Context

Dynamic
Similar settings

Classical settings, Secretary Problem

Context

Dynamic
Similar settings

Classical settings, Secretary Problem

10

Context

Dynamic
Similar settings

Classical settings, Secretary Problem

$\not \approx 0$

π

Context

Dynamic
Similar settings

Classical settings, Secretary Problem

98

\downarrow
$\nexists \varnothing$

Context

Dynamic
Similar settings

Classical settings, Secretary Problem

$\stackrel{\downarrow}{q \$}$

\downarrow
$\not \Perp \varnothing$

\downarrow
0.4

Context

Dynamic
Similar settings

Classical settings, Prophet Inequality

F_{1}

F_{2}

F_{3}

F_{4}

Context

Dynamic
Similar settings

Classical settings, Prophet Inequality

F_{1}
F_{2}

F_{3}

F_{4}
\downarrow
2

Context

Dynamic
Similar settings

Classical settings, Prophet Inequality

F_{1}
F_{2}
\downarrow
2
\downarrow
8

Context

Dynamic
Similar settings

Classical settings, Prophet Inequality

F_{2}
F_{1}
\downarrow
2
\downarrow
ϕ

F_{3}
\downarrow
3

What will we discuss?

The classical Prophet Inequality
has connections with online sales through posted price mechanism.

Prophet Secretary $=$ Prophet Inequality with random arrival.

Formal dynamics

(1) You are given F_{1}, \ldots, F_{n} distributions over $[0, \infty)$.
(2) Following a uniform random order σ, you are shown

$$
V_{\sigma_{1}} \sim F_{\sigma_{1}}
$$

(3) If $V_{\sigma_{1}}$ was taken, the process ends.
(4) If not, you are shown the pair

$$
V_{\sigma_{2}} \sim F_{\sigma_{2}}
$$

(6) If $V_{\sigma_{2}}$ was taken, the process ends.
(0) ...

Note: V_{1}, \ldots, V_{n} are independent random variables.

Performance measure

For every instance $\left(F_{1}, \ldots, F_{n}\right)$, the player can choose a selection algorithm ALG. The performance for this instance will be

$$
\frac{\mathbb{E}(A L G)}{\mathbb{E}\left(\max _{i \in[n]}\left\{V_{i}\right\}\right)}
$$

And a family of algorithms is said to have a perform of c if

$$
\inf _{F_{1}, \ldots, F_{n}} \frac{\mathbb{E}(A L G)}{\mathbb{E}\left(\max _{i \in[n]}\left\{V_{i}\right\}\right)} \geq c
$$

In this setting, it is still unknown the performance of the optimal algorithm given by dynamic programming.

Slight variation

It is remarkable that there is no result that separates, in terms of achievable performance, the following three settings.
(1) Prophet Secretary: $c_{\text {ProSec }}$
F_{1}, \ldots, F_{n} different distributions and
σ independent uniform random order.
(2) Order Selection: COrdSel
F_{1}, \ldots, F_{n} different distributions and
σ order chosen by the player.
(3) I.I.D. Prophet Inequality: $c_{i i d}$
$F_{1}=\ldots=F_{n}=F$ a fixed distribution for everyone.

$$
c_{\text {ProSec }} \leq c_{\text {OrdSel }} \leq c_{i i d}
$$

Main results

Algorithms

$$
\begin{aligned}
& \begin{array}{l}
1-1 / e \\
\approx 0.632
\end{array} \leq 0.635 \leq 0.669 \leq \bar{c} \\
& \text { Previous Azar et al. THIS PAPER } \\
& \text { algorithms } 20182019
\end{aligned}
$$

Upper bound

$$
\begin{array}{ccc}
\bar{c} \leq 0.675 \leq & 0.732 & \leq \\
\text { blind nonadaptive } & & 0.745 \\
\text { (IID Case) } \\
\text { THIS PAPER } & & \text { Hill \& Kertz } \\
2019 & & 1982 \\
& & \text { Correa et al. } \\
& & 2018
\end{array}
$$

Fixed threshold

Theorem[Ehsani et al. 2018]
A fixed threshold algorithm can achieve a performance of $1-1 / e$.
Proof(continuous case). Compute τ such that

$$
\mathbb{P}(\max \leq \tau)=1 / e
$$

$A L G_{\tau}:=$ pick the first value above τ.
Note that if $t \leq \tau$,
$\mathbb{P}\left(A L G_{\tau}>t\right)=\mathbb{P}\left(A L G_{\tau}>0\right)=1-1 / e \geq(1-1 / e) \mathbb{P}(\max >t)$.
Lemma. $\mathbb{P}\left(\right.$ pick $\left.V_{i} \mid V_{i}>\tau\right) \geq 1-1 / e$.

Fixed threshold (continuation)

If $t>\tau$,

$$
\begin{aligned}
\mathbb{P}\left(A L G_{\tau}>t\right) & =\sum_{i \leq n} \mathbb{P}\left(V_{i}>t \mid \text { pick } V_{i}\right) \mathbb{P}\left(\text { pick } V_{i}\right) \\
& =\sum_{i \leq n} \frac{\mathbb{P}\left(V_{i}>t\right)}{\mathbb{P}\left(V_{i}>\tau\right)} \mathbb{P}\left(\text { pick } V_{i}\right) \\
& =\sum_{i=\leq n} \mathbb{P}\left(V_{i}>t\right) \mathbb{P}\left(\text { pick } V_{i} \mid V_{i}>\tau\right) \\
& \geq(1-1 / e) \sum_{i \leq n} \mathbb{P}\left(V_{i}>t\right) \geq(1-1 / e) \mathbb{P}(\max >t)
\end{aligned}
$$

Integrating on t, we get $\mathbb{E}\left(A L G_{\tau}\right) \geq(1-1 / e) \mathbb{E}(\max)$.

Analysing time-thresholds

A fixed threshold can achieve a performance of $1-1$ /e, What if we use a threshold for the first half and then another?

Time thresholds could be analysed further.
Blind strategies is just one way of defining these thresholds. Given $\alpha:[0,1] \rightarrow[0,1]$, define $\tau_{1}, \ldots, \tau_{n}$ by

$$
\mathbb{P}\left(\max _{i \in[n]}\left\{V_{1}, \ldots, V_{n}\right\} \leq \tau_{i}\right)=\alpha(i / n) .
$$

Note: α is instance-independent and quantile-based.

Simplified definition

Fix $\alpha:[0,1] \rightarrow[0,1]$
Given an instance F_{1}, \ldots, F_{n}, compute $\tau_{1}, \ldots, \tau_{n}$ such that

$$
\mathbb{P}\left(\max _{i \in[n]}\left\{V_{1}, \ldots, V_{n}\right\} \leq \tau_{i}\right)=\alpha(i / n) .
$$

Then, accept $V_{\sigma_{i}}$ if it is larger than τ_{i}.

Simplified definition

Fix $\alpha:[0,1] \rightarrow[0,1]$
Given an instance F_{1}, \ldots, F_{n}, compute $\tau_{1}, \ldots, \tau_{n}$ such that

$$
\mathbb{P}\left(\max _{i \in[n]}\left\{V_{1}, \ldots, V_{n}\right\} \leq \tau_{i}\right)=\alpha(i / n) .
$$

Then, accept $V_{\sigma_{i}}$ if it is larger than τ_{i}.

Simplified definition

Fix $\alpha:[0,1] \rightarrow[0,1]$
Given an instance F_{1}, \ldots, F_{n}, compute $\tau_{1}, \ldots, \tau_{n}$ such that

$$
\mathbb{P}\left(\max _{i \in[n]}\left\{V_{1}, \ldots, V_{n}\right\} \leq \tau_{i}\right)=\alpha(i / n) .
$$

Then, accept $V_{\sigma_{i}}$ if it is larger than τ_{i}.

Simplified definition

Fix $\alpha:[0,1] \rightarrow[0,1]$
Given an instance F_{1}, \ldots, F_{n}, compute $\tau_{1}, \ldots, \tau_{n}$ such that

$$
\mathbb{P}\left(\max _{i \in[n]}\left\{V_{1}, \ldots, V_{n}\right\} \leq \tau_{i}\right)=\alpha(i / n) .
$$

Then, accept $V_{\sigma_{i}}$ if it is larger than τ_{i}.

Characteristics

Blind strategies are:
(1) Anonymous: Do not take the identity of the variable revealed into account, only the value observed.
(2) Nonadaptive or Static: Do not take previous values or identity of observed variables into account when facing new values.
(3) Quantile based: Compare values only based on quantiles of the distribution of the maximum.
(9) Instance-independent: The choice of α does not depend on the instance.

General idea

To prove

$$
\mathbb{E}(A L G) \geq \bar{c} \mathbb{E}(\max),
$$

we prove that, for all $t>0$,

$$
\mathbb{P}(A L G>t) \geq \bar{c} \mathbb{P}(\max >t)
$$

For this, fix $\tau_{1} \geq \ldots \geq \tau_{n}$ and study the intervals

$$
\left[0, \tau_{n}\right),\left[\tau_{n}, \tau_{n-1}\right), \ldots,\left[\tau_{2}, \tau_{1}\right),\left[\tau_{1}, \infty\right)
$$

Interval decomposition

For $t \in\left[\tau_{j}, \tau_{j-1}\right)$,

$$
\mathbb{P}(A L G>t) \geq c\left(F_{T}, \alpha, j\right) \mathbb{P}(\max >t)
$$

Technical challenge:
How to relate the distribution of the stopping time F_{T} with the choice of α ?

F_{T} and $F_{\max }$

The key result is that the distribution of the stopping time F_{T}
(1) Upper bound: Is maximized in the i.i.d. case.
(2) Lower bound: Is minimized in the all-but-one not null case.

$$
g_{\alpha} \leq F_{T} \leq h_{\alpha}
$$

We can drop the dependence on F_{T} and work only with α, so

$$
\mathbb{P}(A L G>t) \geq c_{\alpha}(j) \mathbb{P}(\max >t)
$$

Optimizing over the choice of α, we find that there is α^{*} with good performance in every interval, ie: for all j,

$$
c_{\alpha^{*}}(j) \geq \bar{c} \geq 0.669
$$

Summing up

Then, for

$$
\begin{aligned}
\mathbb{P}(A L G>t) & \geq c_{\alpha^{*}}(j) \mathbb{P}(\max >t) \\
& \geq \bar{c} \mathbb{P}(\max >t) \\
& \geq 0.669 \mathbb{P}(\max >t) .
\end{aligned}
$$

Integrating over t, we conclude

$$
\mathbb{E}(A L G) \geq 0.669 \mathbb{E}(\max)
$$

An upper bound for static algorithms

No "nonadaptive" algorithm can achieve a better performance than $\sqrt{3}-1 \approx 0.732$. The algorithm can depend on: the value observed, the identity and on time, but not on the history.

Key instance

$$
\begin{aligned}
& V_{1} \equiv \delta=\sqrt{3}-1 \\
& V_{2}=\left\{\begin{array}{lll}
n & w \cdot p \cdot & 1 / n \\
0 & w \cdot p \cdot & 1-1 / n
\end{array}\right. \\
& V_{3}=\ldots=V_{n} \equiv 0 .
\end{aligned}
$$

The algorithm always picks n, if faced, and must decide
faced with δ at time i, how likely do I accept it?

Optimal strategy and performance

For every n and $\delta \in[0,1)$,
(1) If you face δ too early, probably V_{2} appears after (we do not remember if it already appeared), so we should not pick it.
(2) If you face δ late, because probably you already faced V_{2}, just pick it.
This defines the optimal algorithm $A L G^{*}$ and

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left(A L G^{*}\right)}{\mathbb{E}(\max)}=\frac{1+\delta^{2} / 2}{1+\delta}=\sqrt{3}-1 \approx 0.732
$$

Summary

Algorithms

$$
\begin{aligned}
& 1-1 / e \\
& \approx 0.632 \\
& \text { Previous } \\
& \text { Azar et al. } \\
& 2018 \\
& \leq 0.669 \leq \bar{c} \\
& \text { THIS PAPER } \\
& 2019
\end{aligned}
$$

Upper bound

$$
\begin{array}{ccc}
\bar{c} \leq 0.675 \leq & 0.732 & \leq \\
\text { blind } & 0.745 \\
\text { THIS PAPER } & & \text { (IID Case) } \\
\text { Hill \& Kertz } \\
& & 1982 \\
& & \text { Correa et al. } \\
& & 2018
\end{array}
$$

Future directions

Three different(?) settings
(1) Prophet Secretary (random order)

- How good are nonadaptive algorithms?
- Is the optimal performance worse than the i.i.d. case?
(2) Order Selection (free-order)
- Complexity?
- How to compute the best order?
- Can we get the i.i.d. performance?
- Can nonadaptive algorithms be as good as the optimal one?
(3) I.I.D. Prophet Inequality (all have the same distribution)

