Prophet Secretary Through Blind Strategies

J.Correa ¹, Raimundo Saona¹, B. Ziliotto ²

¹Universidad de Chile

²CEREMADE, CNRS, Université Paris Dauphine

イロト イポト イヨト イヨト

э

Context Dynamic Similar settings

 $\langle \Box \rangle \langle \Box \rangle \langle A \rangle$

Classical settings, Secretary Problem

Context Dynamic Similar settings

Classical settings, Secretary Problem

J. Correa, R. Saona, B. Ziliotto

Prophet Secretary

A B > 4
 B > 4
 B

Context Dynamic Similar settings

 $\langle \Box \rangle \langle \Box$

Classical settings, Secretary Problem

Context Dynamic Similar settings

Classical settings, Secretary Problem

J. Correa, R. Saona, B. Ziliotto

Prophet Secretary

A B > 4
 B > 4
 B

Context Dynamic Similar settings

Classical settings, Secretary Problem

J. Correa, R. Saona, B. Ziliotto

Prophet Secretary

 $\langle \Box \rangle \langle \Box$

Context Dynamic Similar settings

・ロト ・日子・ ・ヨト

글 > 글

Classical settings, Prophet Inequality

Context Dynamic Similar settings

Classical settings, Prophet Inequality

・ロト ・回ト ・ヨト

ヨト

Context Dynamic Similar settings

Classical settings, Prophet Inequality

J. Correa, R. Saona, B. Ziliotto

Prophet Secretary

・ロト ・回ト ・ヨト

.⊒ .⊳

Context Dynamic Similar settings

Classical settings, Prophet Inequality

・ロト ・回ト ・ヨト

э.

Context Dynamic Similar settings

What will we discuss?

The classical Prophet Inequality

has connections with online sales through **posted price mechanism**.

Prophet Secretary = Prophet Inequality with random arrival.

3

Context Dynamic Similar settings

Formal dynamics

- You are given F_1, \ldots, F_n distributions over $[0, \infty)$.
- **②** Following a **uniform random order** σ , you are shown

 $V_{\sigma_1} \sim F_{\sigma_1}$.

- **()** If V_{σ_1} was taken, the process ends.
- If not, you are shown the pair

$$V_{\sigma_2} \sim F_{\sigma_2}$$
 .

・ロト ・回ト ・ヨト ・ヨト

If V_{σ2} was taken, the process ends.
...

Note: V_1, \ldots, V_n are independent random variables.

Context Dynamic Similar settings

Performance measure

For every instance (F_1, \ldots, F_n) , the player can choose a selection algorithm ALG. The performance for this instance will be

 $\frac{\mathbb{E}(ALG)}{\mathbb{E}\left(\max_{i\in[n]}\{V_i\}\right)}\,.$

And a family of algorithms is said to have a perform of c if

$$\inf_{F_1,\ldots,F_n} \frac{\mathbb{E}(ALG)}{\mathbb{E}\left(\max_{i\in[n]}\{V_i\}\right)} \geq c.$$

In this setting, it is still **unknown the performance** of the optimal algorithm given by dynamic programming.

・ロット (四) (日) (日)

Context Dynamic Similar settings

Slight variation

It is remarkable that there is no result that separates, in terms of **achievable performance**, the following three settings.

- Prophet Secretary: c_{ProSec}
 F₁,..., F_n different distributions and σ independent uniform random order.
- Order Selection: c_{OrdSel}
 F₁,..., F_n different distributions and σ order chosen by the player.
- I.I.D. Prophet Inequality: c_{iid} $F_1 = \ldots = F_n = F$ a fixed distribution for everyone.

$$c_{ProSec} \leq c_{OrdSel} \leq c_{iid}$$

・ロン ・四マ ・ヨマ ・ヨマ

Performances Blind strategies

Main results

Algorithms

1-1/e pprox 0.632	\leq	0.635	\leq	0.669	\leq	ī
~ 0.052 Previous		Azar et al.		THIS F	PAP	ER
algorithms		2018		2019		

Upper bound

 $\overline{c} \leq 0.675 \leq 0.732$ \leq 0.745 blind nonadaptive (IID Case) Hill & Kertz THIS PAPER 2019 1982 Correa et al. 2018 イロン イヨン イヨン イヨン æ J. Correa, R. Saona, B. Ziliotto **Prophet Secretary**

Performances Blind strategies

Fixed threshold

Theorem[Ehsani et al. 2018]

A fixed threshold algorithm can achieve a performance of 1 - 1/e.

Proof(continuous case). Compute τ such that

 $\mathbb{P}(\max \leq au) = 1/e$.

 $ALG_{\tau} :=$ pick the first value above τ .

Note that if $t \leq au$, $\mathbb{P}(ALG_{ au} > t) = \mathbb{P}(ALG_{ au} > 0) = 1 - 1/e \geq (1 - 1/e)\mathbb{P}(\max > t)$.

Lemma. $\mathbb{P}(\text{pick } V_i | V_i > \tau) \ge 1 - 1/e$.

Performances Blind strategies

Fixed threshold (continuation)

If $t > \tau$,

$$\mathbb{P}(ALG_{ au} > t) = \sum_{i \leq n} \mathbb{P}(V_i > t | ext{ pick } V_i) \mathbb{P}(ext{pick } V_i)$$

 $= \sum_{i \leq n} rac{\mathbb{P}(V_i > t)}{\mathbb{P}(V_i > au)} \mathbb{P}(ext{pick } V_i)$
 $= \sum_{i = \leq n} \mathbb{P}(V_i > t) \mathbb{P}(ext{pick } V_i | V_i > au)$
 $\geq (1 - 1/e) \sum_{i \leq n} \mathbb{P}(V_i > t) \geq (1 - 1/e) \mathbb{P}(ext{max} > t).$

Integrating on t, we get $\mathbb{E}(ALG_{ au}) \geq (1-1/e)\mathbb{E}(\mathsf{max})$.

・ロン ・回 とくほど ・ ほとう

Performances Blind strategies

Analysing time-thresholds

A fixed threshold can achieve a performance of 1 - 1/e, What if we use a threshold for the first half and then another?

Time thresholds could be analysed further. Blind strategies is just one way of defining these thresholds. Given $\alpha : [0,1] \rightarrow [0,1]$, define τ_1, \ldots, τ_n by

$$\mathbb{P}(\max_{i\in[n]}\{V_1,\ldots,V_n\}\leq\tau_i)=\alpha(i/n).$$

・ロト ・回ト ・ヨト ・ヨト

Note: α is instance-independent and quantile-based.

Performances Blind strategies

Simplified definition

Fix $\alpha : [0,1] \to [0,1]$ Given an instance F_1, \ldots, F_n , compute τ_1, \ldots, τ_n such that $\mathbb{P}(\max_{i \in [n]} \{V_1, \ldots, V_n\} \le \tau_i) = \alpha(i/n)$.

Then, accept V_{σ_i} if it is larger than τ_i .

イロン スポン メヨン メヨン

Performances Blind strategies

Simplified definition

Fix $\alpha : [0,1] \to [0,1]$ Given an instance F_1, \ldots, F_n , compute τ_1, \ldots, τ_n such that $\mathbb{P}(\max_{i \in [n]} \{V_1, \ldots, V_n\} \le \tau_i) = \alpha(i/n)$.

Then, accept V_{σ_i} if it is larger than τ_i .

Performances Blind strategies

Simplified definition

Fix $\alpha : [0, 1] \to [0, 1]$ Given an instance F_1, \ldots, F_n , compute τ_1, \ldots, τ_n such that $\mathbb{P}(\max_{i \in [n]} \{V_1, \ldots, V_n\} \le \tau_i) = \alpha(i/n)$.

Then, accept V_{σ_i} if it is larger than τ_i .

Performances Blind strategies

Simplified definition

Fix $\alpha : [0, 1] \to [0, 1]$ Given an instance F_1, \ldots, F_n , compute τ_1, \ldots, τ_n such that $\mathbb{P}(\max_{i \in [n]} \{V_1, \ldots, V_n\} \le \tau_i) = \alpha(i/n)$.

Then, accept V_{σ_i} if it is larger than τ_i .

Performances Blind strategies

Characteristics

Blind strategies are:

- **Anonymous**: Do not take the identity of the variable revealed into account, only the value observed.
- Onnadaptive or Static: Do not take previous values or identity of observed variables into account when facing new values.
- Quantile based: Compare values only based on quantiles of the distribution of the maximum.
- **Instance-independent**: The choice of α does not depend on the instance.

▲ □ ► ▲ □ ►

.⊒ .⊳

Key decomposition Linking distributions Nonadaptive upper bound

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

General idea

To prove

$$\mathbb{E}(ALG) \geq \overline{c} \mathbb{E}(\max)$$
,

we prove that, for all t > 0,

$$\mathbb{P}(ALG > t) \geq \overline{c} \mathbb{P}(\max > t)$$
.

For this, fix $\tau_1 \geq \ldots \geq \tau_n$ and study the intervals

$$[0, \tau_n), [\tau_n, \tau_{n-1}), \ldots, [\tau_2, \tau_1), [\tau_1, \infty).$$

Key decomposition Linking distributions Nonadaptive upper bound

イロト イポト イヨト イヨト

Interval decomposition

For $t \in [\tau_j, \tau_{j-1})$,

$$\mathbb{P}(ALG > t) \ge c(F_T, \alpha, j)\mathbb{P}(\max > t).$$

Technical challenge:

How to relate the distribution of the stopping time F_T with the choice of α ?

Key decomposition Linking distributions Nonadaptive upper bound

F_T and F_{max}

The key result is that the distribution of the stopping time F_T

- **Upper bound**: Is maximized in the i.i.d. case.
- **2** Lower bound: Is minimized in the all-but-one not null case.

 $g_{\alpha} \leq F_T \leq h_{\alpha}$

We can **drop the dependence** on F_T and work only with α , so

$$\mathbb{P}(ALG > t) \geq c_{\alpha}(j)\mathbb{P}(\max > t)$$
 .

Optimizing over the choice of α , we find that there is α^* with good performance **in every interval**, ie: for all *j*,

$$c_{lpha^*}(j) \geq \overline{c} \geq 0.669$$

J. Correa, R. Saona, B. Ziliotto

・ロット (四) (日) (日)

Key decomposition Linking distributions Nonadaptive upper bound

イロト イヨト イヨト イヨト

æ

Summing up

Then, for

$$\mathbb{P}(ALG > t) \geq c_{lpha^*}(j) \ \mathbb{P}(\max > t) \ \geq \overline{c} \ \mathbb{P}(\max > t) \ \geq 0.669 \ \mathbb{P}(\max > t).$$

Integrating over t, we conclude

 $\mathbb{E}(ALG) \geq 0.669 \; \mathbb{E}(\mathsf{max})$

Key decomposition Linking distributions Nonadaptive upper bound

An upper bound for static algorithms

No "nonadaptive" algorithm can achieve a better performance than $\sqrt{3} - 1 \approx 0.732$. The algorithm can depend on: the value observed, the identity and on time, but not on the history.

Key instance

$$V_1 \equiv \delta = \sqrt{3} - 1$$
$$V_2 = \begin{cases} n & w.p. & 1/n \\ 0 & w.p. & 1 - 1/n \end{cases}$$
$$V_3 = \ldots = V_n \equiv 0.$$

The algorithm always picks *n*, if faced, and must decide

faced with δ at time *i*, how likely do I accept it?

Key decomposition Linking distributions Nonadaptive upper bound

イロト イポト イヨト イヨト

Optimal strategy and performance

For every *n* and $\delta \in [0, 1)$,

- If you face δ too early, probably V_2 appears after (we do not remember if it already appeared), so we should **not pick it**.
- If you face δ late, because probably you already faced V₂, just pick it.

This defines the optimal algorithm ALG^* and

$$\lim_{n\to\infty}\frac{\mathbb{E}(ALG^*)}{\mathbb{E}(max)}=\frac{1+\delta^2/2}{1+\delta}=\sqrt{3}-1\approx 0.732\,.$$

General view Unresolved problems

Summary

Algorithms

1-1/e pprox 0.632	\leq	0.635	\leq	0.669	\leq	ī
~ 0.052 Previous		Azar et al.		THIS F	PAP	ER
algorithms		2018		2019		

Upper bound

 \overline{c} \leq 0.675 \leq 0.732 0.745 \leq blind nonadaptive (IID Case) Hill & Kertz THIS PAPER 2019 1982 Correa et al. 2018 イロン イヨン イヨン イヨン æ J. Correa, R. Saona, B. Ziliotto **Prophet Secretary**

General view Unresolved problems

Future directions

Three different(?) settings

- Prophet Secretary (random order)
 - How good are nonadaptive algorithms?
 - Is the optimal performance worse than the i.i.d. case?
- Order Selection (free-order)
 - Complexity?
 - How to compute the best order?
 - Can we get the i.i.d. performance?
 - Can nonadaptive algorithms be as good as the optimal one?

▲ □ ► ▲ □ ►

∃ ►

③ I.I.D. Prophet Inequality (all have the same distribution)