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What will we discuss?

The classical Prophet Inequality

has connections with online sales
through posted price mechanism.

Prophet Secretary = Prophet Inequality with random arrival.
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Formal dynamics

1 You are given F1, . . . ,Fn distributions over [0,∞).

2 Following a uniform random order σ, you are shown

Vσ1 ∼ Fσ1 .

3 If Vσ1 was taken, the process ends.

4 If not, you are shown the pair

Vσ2 ∼ Fσ2 .

5 If Vσ2 was taken, the process ends.

6 ...

Note: V1, . . . ,Vn are independent random variables.
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Performance measure

For every instance (F1, . . . ,Fn), the player can choose a selection
algorithm ALG. The performance for this instance will be

E (ALG )

E
(
maxi∈[n]{Vi}

) .
And a family of algorithms is said to have a perform of c if

inf
F1,...,Fn

E (ALG )

E
(
maxi∈[n]{Vi}

) ≥ c .

In this setting, it is still unknown the performance of the optimal
algorithm given by dynamic programming.
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Slight variation

It is remarkable that there is no result that separates, in terms of
achievable performance, the following three settings.

1 Prophet Secretary: cProSec
F1, . . . ,Fn different distributions and
σ independent uniform random order.

2 Order Selection: cOrdSel

F1, . . . ,Fn different distributions and
σ order chosen by the player.

3 I.I.D. Prophet Inequality: ciid
F1 = . . . = Fn = F a fixed distribution for everyone.

cProSec ≤ cOrdSel ≤ ciid
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Main results

Algorithms

1− 1/e
≈ 0.632

≤ 0.635 ≤ 0.669 ≤ c

Previous Azar et al. THIS PAPER
algorithms 2018 2019

Upper bound

c ≤ 0.675 ≤ 0.732
blind nonadaptive

≤ 0.745
(IID Case)

THIS PAPER Hill & Kertz
2019 1982

Correa et al.
2018
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Fixed threshold

Theorem[Ehsani et al. 2018]
A fixed threshold algorithm can achieve a performance of 1− 1/e.

Proof(continuous case). Compute τ such that

P(max ≤ τ) = 1/e .

ALGτ := pick the first value above τ .

Note that if t ≤ τ ,
P(ALGτ > t) = P(ALGτ > 0) = 1− 1/e ≥ (1− 1/e)P(max > t) .

Lemma. P(pick Vi |Vi > τ) ≥ 1− 1/e.
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Fixed threshold (continuation)

If t > τ ,

P(ALGτ > t) =
∑
i≤n

P(Vi > t| pick Vi ) P(pick Vi )

=
∑
i≤n

P(Vi > t)

P(Vi > τ)
P(pick Vi )

=
∑
i=≤n

P(Vi > t) P(pick Vi |Vi > τ)

≥ (1− 1/e)
∑
i≤n

P(Vi > t) ≥ (1− 1/e) P(max > t) .

Integrating on t, we get E(ALGτ ) ≥ (1− 1/e)E(max) .
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Analysing time-thresholds

A fixed threshold can achieve a performance of 1− 1/e,
What if we use a threshold for the first half and then another?

Time thresholds could be analysed further.
Blind strategies is just one way of defining these thresholds.
Given α : [0, 1]→ [0, 1], define τ1, . . . , τn by

P(max
i∈[n]
{V1, . . . ,Vn} ≤ τi ) = α(i/n) .

Note: α is instance-independent and quantile-based.
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Simplified definition

Fix α : [0, 1]→ [0, 1]
Given an instance F1, . . . ,Fn, compute τ1, . . . , τn such that

P(max
i∈[n]
{V1, . . . ,Vn} ≤ τi ) = α(i/n) .

Then, accept Vσi if it is larger than τi .
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Characteristics

Blind strategies are:

1 Anonymous: Do not take the identity of the variable revealed
into account, only the value observed.

2 Nonadaptive or Static: Do not take previous values or
identity of observed variables into account when facing new
values.

3 Quantile based: Compare values only based on quantiles of
the distribution of the maximum.

4 Instance-independent: The choice of α does not depend on
the instance.
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General idea

To prove
E(ALG ) ≥ c E(max) ,

we prove that, for all t > 0,

P(ALG > t) ≥ c P(max > t) .

For this, fix τ1 ≥ . . . ≥ τn and study the intervals

[0, τn), [τn, τn−1), . . . , [τ2, τ1), [τ1,∞) .
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Interval decomposition

For t ∈ [τj , τj−1),

P(ALG > t) ≥ c(FT , α, j)P(max > t) .

Technical challenge:

How to relate the distribution of the stopping time
FT with the choice of α?
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FT and Fmax

The key result is that the distribution of the stopping time FT
1 Upper bound: Is maximized in the i.i.d. case.

2 Lower bound: Is minimized in the all-but-one not null case.

gα ≤ FT ≤ hα

We can drop the dependence on FT and work only with α, so

P(ALG > t) ≥ cα(j)P(max > t) .

Optimizing over the choice of α, we find that there is α∗ with
good performance in every interval, ie: for all j ,

cα∗(j) ≥ c ≥ 0.669
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Summing up

Then, for

P(ALG > t) ≥ cα∗(j) P(max > t)

≥ c P(max > t)

≥ 0.669 P(max > t) .

Integrating over t, we conclude

E(ALG ) ≥ 0.669 E(max)
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An upper bound for static algorithms

No “nonadaptive” algorithm can achieve a better performance
than

√
3− 1 ≈ 0.732. The algorithm can depend on: the value

observed, the identity and on time, but not on the history.

Key instance

V1 ≡ δ =
√

3− 1

V2 =

{
n w .p. 1/n
0 w .p. 1− 1/n

V3 = . . . = Vn ≡ 0 .

The algorithm always picks n, if faced, and must decide

faced with δ at time i , how likely do I accept it?
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Optimal strategy and performance

For every n and δ ∈ [0, 1),

1 If you face δ too early, probably V2 appears after (we do not
remember if it already appeared), so we should not pick it.

2 If you face δ late, because probably you already faced V2, just
pick it.

This defines the optimal algorithm ALG ∗ and

lim
n→∞

E(ALG ∗)

E(max)
=

1 + δ2/2

1 + δ
=
√

3− 1 ≈ 0.732 .
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Summary

Algorithms

1− 1/e
≈ 0.632

≤ 0.635 ≤ 0.669 ≤ c

Previous Azar et al. THIS PAPER
algorithms 2018 2019

Upper bound

c ≤ 0.675 ≤ 0.732
blind nonadaptive

≤ 0.745
(IID Case)
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2019 1982

Correa et al.
2018

J. Correa, R. Saona, B. Ziliotto Prophet Secretary



Introduction
Results

Sketch proof
Open questions

General view
Unresolved problems

Future directions

Three different(?) settings

1 Prophet Secretary (random order)

How good are nonadaptive algorithms?
Is the optimal performance worse than the i.i.d. case?

2 Order Selection (free-order)

Complexity?
How to compute the best order?
Can we get the i.i.d. performance?
Can nonadaptive algorithms be as good as the optimal one?

3 I.I.D. Prophet Inequality (all have the same distribution)
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